Static Vacuum

ARGUS VI MS

Multicollection • Low Volume • Precision
Based on more than 20 years of experience in noble gas mass spectrometry instrumentation, we have developed the Thermo Scientific ARGUS VI, our latest generation Static Vacuum Mass Spectrometer (SVMS).

It combines innovative new features with the field-proven technology taken from the Thermo Scientific isotope instruments. The ARGUS VI system is a major step forward in multicollector SVMS technology.

The ARGUS VI mass spectrometer is one member of a family of products designed to meet the requirements of the static vacuum community. The portfolio includes the HELIX SFT split flight tube mass spectrometer which is designed as a fast, high resolution peak jumping system that is also capable of measuring the isotopes of helium simultaneously and the HELIX MC mass spectrometer which is designed to be the ultimate high resolution variable multi collector system. This instrument is capable of measuring any five isotopes of Neon, Argon, Krypton or Xenon simultaneously at new levels of resolution.
The ARGUS VI static vacuum mass spectrometer is a magnetic sector mass spectrometer designed for high precision isotopic analysis of small samples of the noble gases. It comprises a magnetic sector analyzer with 13 cm, 90 degree extended geometry ion optics. The geometry combines excellent ion optic performance with two-direction focusing and high dispersion in a compact footprint.

Sensitivity

One of the key features of the ARGUS VI instrument is its very low internal volume of ~700 cc. Given that the sensitivity of a static vacuum mass spectrometer is inversely proportional to its internal volume, the instrument is the most sensitive commercial instrument available. Coupled to its low volume, the instrument utilizes a X & Z focused Nier type bright source giving sensitivities in excess of 1×10^{-3} Amps / Torr at a source emission of less than 1 mA for Argon.

Detection

The collector array incorporates five Faraday detectors fitted to allow the true simultaneous collection of masses 36, 37, 38, 39 and 40. These Faraday cups incorporate new high gain amplifier circuits that allow for gains of 10^{10}, 10^{11} or 10^{12} Ohm measuring resistors to be used. These temperature controlled evacuated amplifiers have an extended measurement range of 50 volts, rather than the historical 10 volts, giving a much wider dynamic range.
The Faraday cup amplifiers have a built in electronic cross calibration that accurately calibrates the 5 channels. An optional ion counting electron multiplier can be fitted to the Low 3 mass position. This new compact discrete dynode (CDD) electron multiplier has an ion counting efficiency > 80% with inherent noise < 10 cpm. and has been designed specifically for very low outgassing rates.

This CDD device can either be used for single collector peak jumping measurements or in conjunction with the low 1 Faraday for simultaneous 40 / 36. This collector array, coupled to the flexible user definable software suite, allows for not only multicollection analysis or single collector measurements, but also a mixture of both during the same run.
Beam Deflection Technology

The ARGUS VI collector includes a new electrostatic beam deflection technology which allows for the simultaneous measurement of multiple isotopes across its fixed array. The three diagrams below show the capability of the system.

Multiplier Performance Details

- Dynamic range: 1 cps to 1,400,000 cps
- Linearity: < 0.2 % up to 10^{-13} A
- Dark noise: < 10 cpm (0.2 cpm typical)
- Stability: < 0.2 % drift per hour at 300 kcps

Electromagnet

The electromagnet is fabricated from high purity soft iron. It is mounted on roller bearings and has translational and rotational adjustment in all three planes to optimize peak shape and flatness.

- High stability achieved with a temperature controlled field probe
- Excellent results for peak jumping acquisitions
- Maximum sensitivity in all applications
- Fully controlled by the control software, allowing rapid peak jumping between masses while maintaining maximum sensitivity
Ion Source
The ARGUS VI system utilizes a flange mounted “Nier” type ion source that has evolved in design over the last 30 years. This source gives excellent sensitivity while maintaining a low trap / total emission ratio leading to long filament life and low source temperatures. The source is designed for easy de-mount, filament change and cleaning. The source is self-realigning on assembly.

- Self-aligning source filament
- Maximized ion production for high sensitivity
- Simple design, easy to clean and maintain

Vacuum System
The vacuum system is designed for true UHV performance. The system, including the flight tube, is manufactured from a range of advanced materials. These new materials, in conjunction with limited welding and new high specification heat treating and cleaning processes, lead to ultra low background and rates of static rise.

The UHV pumping is achieved by utilizing a 20 L/s ion pump designed specifically for pumping noble gases and a 70 L/s turbo molecular pump backed by a two stage diaphragm pump. The pumping system isolation valve is a CF40 all metal valve that can be pneumatically or manually controlled. The CF19 inlet valve to the mass spectrometer is manually controlled. The mass spectrometer also includes one SAES NP10 non-evaporable getter pump located in its own water cooled jacket. The getter can be isolated from the system via a CF19 all metal valve.

- Vacuum ~ 10^-10 mbar
- Dry-pumped backing line
- Ion gauge for vacuum monitoring
- Optional pneumatic / manual valves have helium leak rates for valve and body < 1 x 10^-10 cc STP/sec
- Heaters and controls to bake mass spectrometer to > 300 °C included

Collector Options

<table>
<thead>
<tr>
<th>CDD</th>
<th>Faraday Low 2</th>
<th>Faraday Low 1</th>
<th>Faraday Axial</th>
<th>Faraday High 1</th>
<th>Faraday High 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon 36</td>
<td>Argon 37</td>
<td>Argon 38</td>
<td>Argon 39</td>
<td>Argon 40</td>
<td></td>
</tr>
<tr>
<td>Argon 36</td>
<td>Argon 37</td>
<td>Argon 38</td>
<td>Argon 39</td>
<td>Argon 40</td>
<td></td>
</tr>
</tbody>
</table>

Collectors (from left to right)
High 2, High 1, Axial, Low 1, Low 2, Low 3 CDD

Beams shown
Blue Argon 40, Green Argon 39, Pink Argon 38, Red Argon 37, Yellow Argon 36
Electronic Control Systems

The ARGUS VI mass spectrometer is driven by a state-of-the-art suite of electronics derived from the industry standard Thermo Scientific TRITON and MAT 253 systems. The source electronics are taken from the MAT 253 stable isotope mass spectrometer and the magnet, data acquisition and collector electronics come from the Thermo Scientific TRITON Plus thermal ionization mass spectrometer.

- Source electronics - All tuning parameters are computer controlled, interfacing to a suite of electronics that operate the HV, focus, electron volts, ion repeller, trap and X & Z steering
- Intelligent interface controls communication between the PC and the source, the magnet and all valve controls
- Output lines for implementation of full valve control
- High stability high gain amplifiers taken from the TRITON Plus TIMS system coupling 50 volt dynamic ranges to 1e10, 1e11 or 1e12 gain amplification
- Additional data collection channels for preparation system inputs

Qtegra Software

The Thermo Scientific Qtegra software is the dedicated data acquisition and control software utilized to control the ARGUS VI system. Operating under Windows® 7 and in conjunction with the embedded interface, this provides comprehensive system control, acquisition and reporting.

- Full computer control and storage of all source parameters
- Full display, including a numeric and graphical display of ion beams and pressure gauges and a graphical valve status display
- Full access to valve control when automatic sequences not in operation
- Ion beams and isotope ratio display during data acquisition to allow operator assessment of data quality during analysis
- All raw data stored
Performance

ARGUS VI Mass Spectrometer Summary

- Extremely efficient ion source capable of sensitivities in excess of 1×10^{-3} Amps / Torr at low trap currents coupled to an industry leading ~700 cc internal volume.
- The ability to measure all 5 Argon isotopes simultaneously. No peak jumping required. This leads to reduced analysis time and greater productivity.
- An advanced collector array incorporating several new features including beam deflection technology allowing for multi dynamic measurements with a fixed collector array (proprietary technology). Electronically calibrated $1 \times 10^{-10} / 1 \times 10^{-11} / 1 \times 10^{-12}$ amplifiers with 50 volt ranges enable majority of analysis to be carried out on long life Faraday detectors. CDD multiplier technology allows for high counts rates coupled with extremely low noise.
- Footprint. The ARGUS VI mass spectrometer is the most compact noble gas system available.

Performance Specifications

- Mass range: 1 to 140 mass units (> 80 at reduced HV)
- Background: To be equal or better than 5×10^{-14} cc STP at mass 36
- Sensitivity: Argon: $> 1 \times 10^{-3}$ Amps / Torr with a source current < 1mA
- Resolution: Axial detector resolution > 200
- Peak side stability: Drift to be less than the equivalent of ±50 ppm in mass over 30 minutes at mass 40
- Rate of rise: Rate of rise at mass 40 to be less than 1×10^{-12} cc STP/min of Argon 40 over 30 minutes
- Abundance sensitivity: < 5 ppm for adjacent masses (39 contribution from 40) at a pressure of 1×10^{-7} mbar
- Peak flat: Axial Faraday peak flat will be equal or better than ± 1 in 1×10^3 over ± 150 ppm in mass
Preparation System

This prep line is used for all sample and reference gases prior to entry in the mass spectrometer. The line is equipped with two SAES NP10 getter pumps in jackets that can be water cooled, an ultra low volume micro ion gauge, 2 x spike / air reservoir and pipettes (pipette volumes are both 0.1 cc, liquid nitrogen cold trap, Agilent StarCell 20 l/s ion pump and a connection to the dry turbo molecular pumping system. Two spare ports, sealed by a CF16 vacuum blank flange, are provided to allow for future upgrades.

The two inlet lines enable sample gas to be cleaned prior to admission to the final clean up line. The two lines are pumped by a turbo molecular pump backed by a 2 stage diaphragm pump and are fitted with an NP10 getter pump in jackets that can be water cooled. The temperature of each getter can be controlled by its own electrical supply.

Automation

Rapid Sample Analysis
Inner Earth to Outer Space

www.thermoscientific.com/EARTH

Noble Gas MS
Thermo Scientific ARGUS VI, HELIX MC and HELIX SFT

Thermal Ionization MS
Thermo Scientific TRITON Plus

Multicollector ICP-MS
Thermo Scientific NEPTUNE Plus

ICP-MS
Thermo Scientific ELEMENT 2, ELEMENT XR and iCAP Q

Gas Isotope Ratio MS
Thermo Scientific MAT 253

Gas Isotope Ratio MS
Thermo Scientific DELTA V

www.thermoscientific.com/ARGUS

©2011, 2012 Thermo Fisher Scientific Inc. All rights reserved. Windows is a registered trademark of Microsoft Corporation. Agilent and StarCell are registered trademarks of Agilent Technologies, Inc. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Thermo Scientific Scientific Bremen GmbH Management GmbH Registered to ISO 9001:2008

Thermo Scientific
Part of Thermo Fisher Scientific